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Abstract. With the aim of analysing measurements of absorption of electromagnetic radiation by fullerene
molecules in the gas phase, in liquid solution, and in solid films, we consider the classical problem of
correction for enhancement of the local field due to polarisation of the medium. We argue that for crystalline
films the Clausius-Mossotti relation between the molecular polarisability and the dielectric function of the
medium should be reasonably accurate, despite the fact that the polarised fullerene molecules are far from
being point dipoles. For fullerene molecules in solution, the field derived by Onsager from a cavity model
should be a good approximation, and we discuss and correct errors in earlier developments of this model.
Owing to the large polarisability of fullerenes, the local field corrections are very important, leading to
large changes in the relative strength of absorption lines and also to small shifts in the positions of these
lines. Application of the corrections leads to improved consistency between measurements in the gas phase,
in solution, and in the solid.

PACS. 36.40.Vz Optical properties of clusters – 41.20.-q Applied classical electromagnetism –
42.25.-p Wave optics

1 Introduction

This study of the absorption of light by molecules or clus-
ters embedded in a medium is closely connected to our
development of dielectric models of fullerenes, published
separately in a paper we shall refer to as I [1]. The pa-
rameters of the models were adjusted to give a fair ac-
count of published measurements of the complex polaris-
ability of fullerene molecules. The absorption associated
with electronic transitions has been determined by a vari-
ety of methods, [2] including measurement of absorption in
the gas phase [3–6] and in liquid solution [7–10], photoion-
isation [11], ellipsometry [12], and electron energy loss in
solid films [13–18]. We were primarily interested in the po-
larisability of isolated molecules but most measurements
have been made for fullerenes in solution or in solid films.
In the comparison with experiments we therefore encoun-
tered the problem of relating the polarisability of an in-
dividual molecule to the macroscopic dielectric properties
of molecules embedded in a solid film or in a liquid. Sur-
prisingly, there is no consensus on the magnitude of the
local field corrections to be applied in this connection and
the literature abounds in errors and misconceptions.

The general problem of the dielectric properties of in-
homogeneous systems is a very complex one, with an in-
teresting history and a vast literature [19–23]. However,
here we focus on two simple types of system, relevant for
experiments on absorption of light by fullerenes. The first
one is a fullerite film which we may think of as an FCC
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lattice of polarisable spheres with vacuum in between. We
shall argue that the standard Clausius-Mossotti (CM) re-
lation between the molecular polarisability and the dielec-
tric function and the associated Lorentz-Lorenz expression
for the local field should be good approximations. In the
standard derivation of these relations, usually ascribed to
Lorentz, it is assumed that the molecules can be regarded
as point dipoles, which is a questionable approximation for
the very large fullerene molecules. However, corrections for
a lattice of finite sized spheres were calculated already by
Rayleigh in a beautiful paper from 1892 [24], and his re-
sults have later been amended and corrected for numerical
errors [25,26]. We shall also consider the derivation of the
CM relation presented in 1879 by Clausius, who used a
somewhat different argument [27]. This derivation is less
stringent but his qualitative explanation of the local field
enhancement is valuable for understanding more complex
inhomogeneous systems.

The absorption of light by an isolated molecule is de-
termined by the imaginary part of the polarisability α
alone. However, the CM formula relates α to the complex
dielectric function ε of the material and hence one needs
both the imaginary and the real part of ε for a determi-
nation of Imα. In I we compared the dielectric models
mainly with data from inelastic electron scattering, since
these data are sufficiently complete to allow application
of Kramers-Kronig relations for evaluation of both Reε
and Imε. For narrow absorption lines a simpler correc-
tion for polarisation of the medium is applicable, which in
the literature is attributed to Smakula [28] or sometimes
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to Chako [29] but which was discussed by Voigt already
in 1901 [20,30]. For fullerenes, the Smakula formula may
be applied to measurements on infrared-active vibrations
by attenuation of light in solid films [1].

The Smakula correction is often applied also to
molecules in liquid solution but this is not justified. We
shall base our discussion of the multi-component case
on the concepts introduced by Onsager [31]. The solute
molecule is placed in a cavity in the solvent and the field
acting on the molecule is divided into a cavity field and a
reaction field. The latter field results from the response of
the medium to the perturbation by the dipole field from
the molecule. Owing to this reaction, the local field cor-
rection is not determined by the dielectric properties of
the medium alone, but depends also on the polarisability
of the impurity molecule. The theory has broad applica-
tions to absorption by solute molecules and by defects in
materials, and the large polarisability and the spherical
shape of C60 make it an ideal molecule for application of
the cavity concepts.

We compare measurements of absorption of light by
C60 molecules in the gas phase with absorption mea-
surements for C60 in solution and with absorption cross-
sections in the solid phase derived from inelastic electron
scattering. The measurements on solute molecules are re-
stricted to wavelengths where the solvent does not absorb,
and the frequency interval is too limited for a Kramers-
Kronig analysis. However, as we shall show, it is possi-
ble to derive the complex polarisability α(ω) for the lim-
ited interval through representation of α(ω) as a sum of
Lorentzians, with inclusion of a contribution from reso-
nances outside the intervals estimated from the measure-
ments on solid films. The Onsager correction for the local
field enhancement leads to large changes in the relative
strength of absorption lines and small shifts in the po-
sitions of these lines, thereby improving the consistency
between measurements on molecules in different surround-
ings.

Our main aim has been to derive good estimates of
the local field corrections to the absorption strength since
these are crucial for our comparison in I of measured ab-
sorption of light in fullerenes with predictions from a di-
electric model. In this connection, the line shifts are of
minor importance. In the literature, on the other hand,
the line shifts have received much more attention, prob-
ably because they are easier to determine accurately by
experiments. Also for fullerenes there have been several
studies of line shifts in different solvents [32–34]. A very
interesting review of early work on both line shifts and line
intensities is given in reference [20]. It appears that the
small shifts caused by long range polarisation interactions
can often be out-weighed by shifts due to other types of
interactions with the nearby molecules, as for example hy-
drogen bonding or complex formation. Such interactions
may also change the magnitude of the induced dipole mo-
ment of a solute molecule. However, for fullerenes in so-
lution the large frequency dependent modification of the
local field is expected to be the dominant correction to
the absorption strength. In any case, large effects due to

polarisation of the solvent are present and should be taken
into account. As it turns out, polarisation effects account
also in the main for the observed shifts of the strong UV
absorption lines of buckminsterfullerene in solution and in
solid films.

In the presentation we have aimed at providing a solid
foundation for our conclusions and not just quote formu-
las from the literature. As illustrated by many examples,
there are few articles on this subject that can be fully
trusted. We therefore discuss the basic concepts in some
detail and give derivations of the formulas applied, many
of them collected in Appendix A. Since misconceptions
and incorrect formulas are often accepted and passed on
in the literature, we have discussed some influential pa-
pers and have made an effort to point out and correct the
most important errors we have found. However, we have
no ambitions of providing a comprehensive review of the
field; we just hope to have avoided adding serious errors
of our own.

2 Clausius-Mossotti relation

The standard discussion of the CM relation in text-
books [35] follows the formulation given by Lorentz [36].
We define the local field Eloc(r), acting on a molecule at a
crystal lattice site, as the field from external sources and
from polarisation of the other molecules in the crystal. To
find the magnitude of the local field, we introduce an aux-
iliary sphere centred on the molecule, with a radius which
is large compared to the molecular separation but small
compared to the length scale for variation of the macro-
scopic field. For electromagnetic radiation with frequency
well up into the UV range the wavelength is sufficiently
long for such a construction to be meaningful, and the
following discussion applies equally well for static fields
and for the amplitude of the complex fields representing
radiation with a wavelength which is long in this sense.

We now consider the contributions to the local field
from sources outside and inside the sphere. The polar-
isation charges outside may be replaced by a smeared
out density of dipoles, i.e., by the macroscopic polarisa-
tion P. The macroscopic field E includes a contribution
from the smeared out density of all polarisation charges
and we therefore obtain the field from outside charges
alone by subtraction of the constant field inside a sphere
with polarisation P, which is −(4π/3)P in Gaussian units
(Eq. (A.7)). This leads to the relation

Eloc(r) = E +
4π
3

P + Enear
loc (r), (1)

where the last term derives from the correct charge dis-
tribution inside the sphere with omission of the molecule.
In the standard argument, the following two assumptions
are now introduced [35]: first, the spatial dimensions of the
molecule are assumed to be small enough that the local
field can be taken to be uniform over the whole molecule.
We can then use the molecular polarisability α, defined



J.U. Andersen and E. Bonderup: Local field corrections for light absorption by fullerenes 437

for an isolated molecule in a uniform external field, to
calculate the dipole moment,

p = αEloc(r), (2)

where r now refers to the lattice site. Secondly we as-
sume that the near field, Enear

loc (r), can be approximated
by the sum of contributions from point dipoles at lattice
points inside the auxiliary sphere. If the crystal has cu-
bic symmetry, it follows from this second assumption that
the near-field contribution in equation (1) is zero since
the contributions from lattice points with coordinates rel-
ative to r which are related by mirror operations changing
the sign of a coordinate or interchanging two coordinates
cancel. Introducing the dielectric function ε for the solid,

εE = E + 4πP, (3)

we may then write equation (1) as

Eloc(r) =
ε+ 2

3
E. (4)

The field given by this formula is usually referred to as the
Lorentz-Lorenz local field. The CM relation is obtained
from equations (2–4), with P= Np where N is the density
of molecules in the solid,

Nα =
3

4π
ε− 1
ε+ 2

· (5)

Solving for ε we may rewrite this relation as

ε =
1 + 2(4π/3)Nα
1− (4π/3)Nα

· (6)

For a dilute material with ε close to unity this equation
reduces to

ε ' 1 + 4πNα, (7)

but when the term (4π/3)Nα approaches unity, the values
of the dielectric function are much larger than given by
equation (7).

C60 molecules condense into a lattice with cubic sym-
metry (FCC), but it is not immediately clear that the
relations above apply to C60 films since the molecules can
hardly be considered to be point dipoles, as apparently
required by the two assumptions above. Consider the first
assumption. In the C60 molecule, the carbon atoms are
displaced by 3.5 Å from the centre but the molecule has
close to spherical symmetry. As shown in I, the frequency
dependent polarisability of the molecule may be modelled
rather well by that of a classical dielectric with spherical
symmetry, and the dipole moment induced by an arbitrary
external field in such a system is identical to that induced
by a constant external field with the same value at the
centre (Appendix A).

We may also argue for reasonable accuracy of the sec-
ond assumption. The dominant contribution to the field at
a lattice point r from the polarisation of nearby molecules
comes from the induced dipole moment of these molecules

and equals the sum of fields from point dipoles at lattice
points. The first correction is a sum of quadrupole fields
and for a point with cubic symmetry also this sum van-
ishes; in fact, the sum vanishes for all multipole fields of
even order. A careful discussion of corrections to the CM
relation for a simple cubic lattice of dielectric spheres of
finite size was given by Rayleigh [24]. This work has been
extended by Günther and Heinrich [25] and by Doyle [26],
who also discussed numerical errors in reference [24]. From
the calculations in references [25,26] for an FCC lattice we
estimate the corrections to the CM relation for fullerites
to be below 2–3%. Landauer raises a third question con-
cerning the point dipole approximation: for molecules of
a finite size, the auxiliary sphere cuts through a number
of molecules and their contribution to the near field be-
comes uncertain [21]. However, since the number of such
molecules scales with the second power of the radius of
the sphere and the contribution by individual molecules
on the surface scales as the inverse third power, this prob-
lem vanishes in the limit of a macroscopic radius.

The importance of the symmetry argument is illus-
trated by the calculations by Senet et al. on graphite
[37]. Following presumably the procedure described by
Rayleigh, they found a modified CM relation, which may
alternatively be expressed as a relation for the local
field,

Eloc = (1−Bu +Buε)E, (8)

where Bu is a constant and the index u refers to the di-
rection of the external electric field. For Bu = 1/3 equa-
tion (8) reproduces the Lorentz-Lorenz expression in equa-
tion (4), valid for a cubic crystal, but for graphite the
values of the constant are different for field directions par-
allel to and perpendicular to the c-axis. Senet et al. found
B‖ = −0.606 and B⊥ = 0.803 for the two directions and
we have repeated the calculation and confirmed their re-
sults. As discussed in I, the large negative value for B‖ is
consistent with a simple layer model.

Rayleigh’s paper contains the earliest clear presenta-
tion of the symmetry argument for cubic crystals that we
have been able to find, but the origin of the argument
is usually ascribed [21] to very early work (∼1870) by
Lorentz. Rayleigh quotes papers from 1880 by Lorentz
and by Lorenz, with the comment that the derivations
in these papers are difficult to follow, and we can only
agree. The association of the names Clausius and Mossotti
with the relation in equation (5) is discussed in references
[21,23], and Scaife quotes a barbed remark by Maxwell
that Mossotti just copied earlier work on magnetism by
Poisson, substituting magnetic fields by electric fields
and French by Italian! We have found the reference to
Clausius [27] given by Landauer very readable. The deriva-
tion is less precise than that given by Rayleigh and Lorentz
but it contains an important qualitative explanation of the
origin of the enhancement of the local field over the aver-
age field in the medium.

Clausius divides the medium into polarisable
small bodies, which we shall denote molecules, and
a non-polarisable substance between the molecules.
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Furthermore, the medium is divided into small cells,
each containing one molecule, and for simplicity the cell
is approximated by a sphere. Treating the surrounding
medium as a continuum characterized by a dielectric
constant ε, Clausius finds that the field inside a cell
stemming from sources outside, Eloc, is constant, and he
makes the important observation that the field polarising
the molecule is this constant field and not the total
field including the contribution from the molecule itself.
He then finds that, independent of the cell volume,
the integral over the spherical cell of the field from the
molecule equals −(4π/3)p, where p is the dipole moment,
and obtains the following relation between the local field
and the average field E in the medium,

E = Eloc −
4π
3
p

v
= Eloc −

ε− 1
3

E, (9)

where v is the cell volume. This relation leads to
equation (4) and hence also to equation (5). Thus the
local field applied to calculate the dipole moment of a
molecule in the medium from the polarisability α for an
isolated molecule in an external field is larger than the
average field in the medium because it does not include
the field from the molecule itself, which locally is in the
opposite direction. The name “local field” easily leads to
the misconception that it refers to a local value of the to-
tal microscopic field, and hence the term “effective field”,
introduced for example in the review by Landauer [21],
might be more appropriate.

The relation in equation (9) is applied by Landauer
in a related but conceptually different argument, the “ex-
cluded volume approach” to the calculation of the dielec-
tric constant of a medium containing a random distri-
bution of “molecules” [21,38]. He argues that if the dis-
tribution were truly random the effective field polarising
a molecule would obviously be the average field in the
medium, and that therefore the enhancement of the ef-
fective or local field stems from the exclusion of overlap
of the molecules. If an additional molecule is placed at
random between the other molecules, it will be exposed
to the average field between these. Since the integral of
the field from a molecule over a spherical volume con-
taining the molecule equals −(4π/3)p, the second term in
equation (9) stems from the integration over the molecu-
lar volume, and when this region is excluded the average
field becomes Eloc in equation (4). However, there is a
great danger in this argument. It appears not to contain
the influence of the additional molecule on the polarisa-
tion of its surroundings and the resulting change in the
local field, the so-called reaction field. Although Landauer
is aware of this problem and emphasizes that the reac-
tion field should be included, it is a problem contained
already in the formulation of the approach. Thus, it is not
correct that for a truly random, uncorrelated distribution
of molecules, the effective field would be equal to the av-
erage field1. As we shall see in the following section, the

1 A simple model illustrating this situation is the superpo-
sition of a dielectric sphere on a homogeneous medium with

concept of a reaction field becomes even more important
for multi-component systems.

3 Absorption of electromagnetic radiation

We are concerned with the absorption of electromagnetic
radiation and first consider an isolated molecule which in
the presence of a complex electric field E with frequency
ω acquires a dipole moment p = αE. The photon absorp-
tion cross-section σ(ω) corresponds in a classical descrip-
tion to the ratio between the time average of the rate of
energy absorption by this dipole, W = Re(E)d/dtRe(αE),
and the time average of the incident flux of energy deter-
mined by the Poynting vector. If we write the electric field
as E0 exp{iω(z/c− t)} the time averaged absorption rate
becomes

〈W 〉 =
1
2

Re
(
E∗0 (−iωαE0)

)
=

1
2
ω|E0|2Imα, (10)

where the asterisk indicates complex conjugation. The
average incident energy flux equals (c/8π)|E0|2 and the
cross-section is therefore given by

σ(ω) = 4π(ω/c)Imα. (11)

For molecules in a medium with dielectric function ε, we
may interpret the ratio of the average of the rate w of
energy absorption per unit volume to the time averaged
energy flux as the product of the density N of molecules
and their effective absorption cross-section σm. The ab-
sorption rate is obtained in close analogy to equation (10)
and if we apply equation (3) to express the polarisation in
terms of the field amplitude E0 we obtain

〈w〉 =
1
2

Re
(
E∗0 (−iω)

ε− 1
4π

E0

)
=

ω

8π
|E0|2Imε. (12)

According to the wave equation derived from Maxwell’s
equations, the space and time dependence of a plane wave
is of the form exp(iω((n+ ik)z/c− t)), with (n+ ik)2 = ε.
From Faraday’s law it follows that the ratio of magnetic
to electric field equals the index of refraction n and the
expression above for the energy flux is multiplied by this
factor. For the product Nσm we then have

Nσm =
ω

c

1
n

Imε. (13)

This result agrees with the energy absorption coefficient
2ωk/c obtained from the damping of the plane wave.

dielectric constant ε. If we introduce the notation ε = ε + ∆ε
for the dielectric constant inside the sphere, we obtain from
equations (A.6, A.7) and the connection between polarisation
and field that the effective field acting on the superposed sphere
is given by Eeff = E(3+∆ε)/(3+∆ε/ε), where E is the average
field in the medium. The effective field includes a contribution
from modified polarisation of the original medium, both out-
side and inside the sphere, but not the field due to polarisation
of the superposed dielectric.
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The formula may also be applied to obtain the absorp-
tion cross-section of impurity molecules in a non-absorbing
medium, with N replaced by the density δN of impurities.

For a one-component medium with cubic symmetry,
the dielectric function in equation (13) is connected to the
polarisability α in equation (11) through the CM relation.
Introducing equation (5) into equation (11) we find

σ =
1
N
ω

c

9
|ε+ 2|2 Imε, (14)

and combination with equation (13) yields

σm =
1
n

∣∣∣∣ ε+ 2
3

∣∣∣∣2σ. (15)

This formula has a simple interpretation: as expressed in
equation (10), the absorption by a molecule is propor-
tional to the absolute square of the field E0 acting on the
molecule, and in the medium E0 should be replaced by the
local field given by equation (4). The factor 1/n derives
from the Poynting vector.

According to equation (14), it is in general necessary
to measure both the real and the imaginary part of ε in
order to determine the molecular absorption cross-section
σ(ω). However, for a narrow line a simpler procedure may
be applied, as discussed in Section 5. Within a frequency
interval around the jth resonance, the dielectric function
may be approximated by a real constant term, εj∞ = n2

j∞ ,
plus a Lorentzian resonance term, and as we shall show,
the correct integrated cross-section for the line is then
obtained if ε is replaced by n2

j∞ in the denominator in
equation (14). As an approximation, the same replacement
may be introduced into equation (15),

σm '
1
nj∞

(
n2
j∞ + 2

3

)2

σ. (16)

This formula has been applied in the interpretation of
measurements of vibrational absorption lines in solid C60,
although with some inconsistency, as discussed in I. In
his derivation of the formula, Smakula [28] considered ab-
sorption by defects in a solid and he used the CM relation
for this situation. Sometimes the formula is attributed to
Chako [29] or to Polo and Wilson [39]. Chako considered
the absorption by a solute molecule and apparently this
was also the situation Polo and Wilson had in mind. As
we shall see, these derivations were all incorrect because
the CM relation – or equivalently, the Lorentz-Lorenz for-
mula for the local field – only applies to a one-component
medium (see also Ref. [20]).

4 Cavity model and Onsager relation

The local field enhancement is also important for light ab-
sorption by molecules in solution. When the molecule in
question is one of the molecules forming the liquid, we may
argue that the Lorentz-Lorenz formula in equation (4)
should apply because the time averaged distribution of

surrounding molecules should have approximate cubic
symmetry [40]. However, when the solute and solvent
molecules are different, the last term on the right hand
side of equation (1) should be modified since the differ-
ence in the dipole field from the solute molecule causes a
change in the polarisation of the surrounding liquid. To
estimate this modification, Onsager replaced the solvent
molecules by a dielectric with the dielectric function ε of
the liquid and introduced a spherical cavity containing
the solute molecule [31]. The large, spherical C60 molecule
should be ideal for application of this model. (For a critical
discussion of the cavity concept, see Ref. [41].)

For a molecule with polarisability α at the centre of
a cavity with radius r1 in a medium with dielectric func-
tion ε, the local field acting on the molecule is shown in
Appendix A (Eq. (A.13)) to be given by

Eloc = G
1

1−RαE, (17)

where E is the average electric field in the medium far
from the solute molecule, and the coefficients G and R
are given by

G =
3ε

2ε+ 1
and R =

2(ε− 1)
(2ε+ 1)r3

1

· (18)

The factor G gives the enhancement of the field in an
empty cavity while the second factor in equation (17) cor-
rects (to infinite order) for the reaction field, i.e., the field
in the cavity due to the polarisation of the surrounding
medium by the dipole field from the molecule in the cav-
ity. If the molecule is identical to the molecules in the
medium and the cavity volume is chosen to be the volume
per molecule in the liquid, the Lorentz-Lorenz formula for
the local field (Eq. (4)) is retrieved. However, if the cavity
contains a molecule with greater polarisability, the dipole
field is stronger and this causes an increased polarisation
of surrounding molecules which, in turn, increases the lo-
cal field acting on the molecule.

The application of the Onsager model to absorption
by an impurity is discussed for example by Smith and
Dexter in their review of the optical absorption by defects
in solids [42]2. Consider an impurity with concentration
δN and polarisability αi. The local field may be expressed
by equations (17, 18) and the dipole moment of the im-
purity becomes

µi = αiEloc = G
αi

1−Rαi
E. (19)

In the evaluation of the change in polarisation of the
medium due to the presence of the impurity, we should
consider a thin slab with surfaces parallel to E to avoid
contributions from polarisation charges at outer surfaces.
As shown in Appendix A (Eq. (A.12)), the field in the
medium then corresponds to the presence of point dipoles
with magnitude Gµi. Denoting by αh the polarisability

2 We show in Section 5 that due to a mathematical error,
the final result in reference [42] is incorrect.
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of the host medium removed from the cavity, we obtain
for the change in polarisation

δP = δNδp = δNG2

(
αi

1−Rαi
− αh

1−Rαh

)
E. (20)

We assume that at the frequency ω under consideration
there is no absorption by the host medium, i.e., ε(ω) is
real, and we then obtain from equations (3, 20) for the
change in the dielectric function,

Imδε = 4πδNG2 Imαi

|1−Rαi|2
· (21)

From a combination of equations (11, 13, 21) we find for
the absorption cross-section

σm = σ
G2

|1−Rαi|2
1
n
· (22)

The interpretation of this formula is analogous to that of
equation (15): the absorption by the impurity is propor-
tional to the absolute square of the Onsager local field,
given by equation (17). Since the impurity concentration
is low, we may in equation (22) apply the index of refrac-
tion of the host material. To evaluate R we must estimate
the volume of the cavity occupied by the molecule and, as
noted by Onsager, the choice of a void radius will prob-
ably involve “some arbitrary exercise of judgment”. An
example is the discussion in Section 6 of the cavity radius
for C60 in solution.

The expressions for G and R in equation (18) relate
directly to the cavity model but the formulas in equa-
tions (17, 22) have a wider application. For example, for
an impurity at a position r in a crystal we may interpret
GE as the field at r in the absence of the impurity and Rµ
as the reaction field at r from the lattice, due to the pres-
ence at r of a dipole with moment µ. In the point dipole
approximation, both G and R may be evaluated numeri-
cally in analogy to the determination of the coefficients in
the modified CM relation for graphite [37].

For a system like a spherical metal cluster in liquid
solution [43] or in a rare-gas matrix [44], we may apply
the model discussed at the beginning of Appendix A di-
rectly and the absorption cross-section is obtained from
equation (A.5). Thus, for a dilute solution with concen-
tration δN, we obtain an additive contribution δε to the
dielectric constant ε of the medium,

δε = 4πδNr3
1

ε(ε− ε)
ε+ 2ε

, (23)

where r1 is the radius and ε(ω) the internal dielectric func-
tion of the cluster. If ε is real, the effective absorption
cross-section in equation (13) is then given by

σm = 9
V

c
ε3/2

ωImε
(Reε+ 2ε)2 + (Imε)2

, (24)

where V is the cluster volume. This formula may appear
simpler than equation (22) but it is equivalent to this for-
mula and hence contains the correction for local field en-
hancement. This was not realized by the authors of refer-
ence [44] who applied equation (24) to describe absorption

by silver clusters in a rare-gas matrix. The formula for the
integrated oscillator strength given in their reference [25]
contains a factor (Eloc/E)2 which they claim to be un-
known and therefore set equal to unity. However, as shown
in Appendix A, the local field is determined by the model
used to derive equation (24) and the factor differs from
unity (Eq. (A.8)). We discuss oscillator strengths and the
sum rule in more detail in the following section (for the
result, see Eq. (36)).

5 Narrow absorption lines

In Sections 3 and 4 we discussed the extraction of molec-
ular absorption cross-sections from measurements on con-
densed media, and we derived formulas for the one-
component case, equation (15), and for impurity molecules
in a host medium, equation (22). In general, measurement
of absorption in a condensed medium does not suffice for
a determination of the molecular cross-section but, as we
shall now show, this problem disappears for narrow ab-
sorption lines.

Close to a resonance frequency ωj , the polarisability
of a molecule may be expressed as a real constant plus a
complex Lorentzian,

α(ω) = αj∞ −
fje

2/m

ω2 − ω2
j + iγjω

, (25)

where m and −e are the mass and charge of the electron.
The integrated oscillator strength of the resonance, fj ,
is proportional to the integrated cross-section and from
equations (11, 25) we obtain

fj =
mc

2π2e2

∫
σ(ω)dω. (26)

We first consider a medium with only one kind of
molecules. The dielectric function is connected to the
molecular polarisability through the CM relation, and in-
serting equation (25) into equation (6) we find after some
rearrangement that ε(ω) takes the same mathematical
form as α(ω),

ε(ω) = n2
j∞ −

Sjω
′2
j

ω2 − ω′2j + iγjω
, with

(27)

n2
j∞ =

1 + 2r−3
w αj∞

1− r−3
w αj∞

, (4π/3)r3
w = N−1.

We have here introduced the Wigner-Seitz radius rw. The
shift of the resonance frequency may be expressed in terms
of a plasma frequency ω0,

ω′2j = ω2
j − ω2

0fj(n
2
j∞ + 2)/9 , ω2

0 = 4πNe2/m, (28)

and the strength of the resonance is given by

Sjω
′2
j = ω2

0fj(n
2
j∞ + 2)2/9. (29)
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With respect to the value for a dilute material with ε = 1+
4πNα, this strength is enhanced by the factor (n2

j∞+2)2/9.
In a transmission experiment, the energy absorption

coefficient Nσm = 2ωk(ω)/c is measured, where, as above,
ε = (n+ ik)2. If the dielectric function is expressed in the
form

ε(ω) = n2
∞ −

∑
j

Sjω
′2
j

ω2 − ω′2j + iγjω
, (30)

where n∞ is the (known) index of refraction outside the
absorption region, the parameters ω′j, γj , and Sj may
be determined from a fit to the measured function k(ω).
Close to the jth resonance, the expression may then be
identified with equation (27), where the constant term
n2
j∞ = Reε(ω′j) is approximately equal to n2

∞ but may
include an additional contribution from the other reso-
nances because the real part of ε(ω) is less localized at
resonances than the imaginary part. The integrated os-
cillator strength fj of the resonance is now found from
equation (29).

The Smakula formula in equation (16) is obtained as
an approximation from equations (11, 13, 26–29) if we
ignore the shift in the resonance frequency and replace
the function n(ω) by the constant value nj∞ . Using this
formula we may determine the integral of the molecular
cross-section σ directly from the integral of the measured
absorption cross-section σm. We have checked by numer-
ical calculation that the error is less than 10% when the
ratio Sjω

′
jγ
−1
j /n2

j∞ is smaller than unity but the error
grows rapidly when this ratio increases beyond unity. The
picture with narrow resonances is not appropriate for the
electronic transitions of main interest in this paper but it
is useful for the vibrational transitions as discussed in I.

For the impurity case, two rather separate traditions
have developed, one for defects in solids and the other
for solute molecules in liquids. For absorption of light by
defects, it appears that Herring was the first to discuss the
modification of the Smakula formula due to the change in
polarisation of the molecules surrounding the defect, and
from an energy argument he derived a formula equivalent
to our equation (20) [45]. In a footnote, he commented on
the many algebraic errors in the literature on this subject
but in the subsequent evaluation of his own formula, also
he committed a simple algebraic error, as first pointed out
by Silsbee [46] and explained by Smith and Dexter in a
footnote in reference [42], p. 191.

As it turns out, Smith and Dexter committed an anal-
ogous error in their evaluation on the following page! Fol-
lowing reference [42], we write equation (20) for a host
medium with real ε at frequency ω as an expression for
the energy absorption coefficient,

δNσm = 2k
ω

c
=

ω

nc
Imδε

= δN
4πω
c

G2

n
Im
(

α

1−Rα

)
, (31)

where we have omitted the index i on α, and where we
may insert the refraction index for the medium in the

expressions for G and R. Close to a resonance, we may
apply the expression in equation (25) for the polarisability
of the impurity, and we obtain

α(ω)
1−Rα(ω)

=
αj∞

1−Rαj∞
− 1

(1−Rαj∞)2

fje
2/m

ω2 − ω′2j + iγjω
,

(32)

where the resonance position is given by

ω′2j = ω2
j − fj(e2/m)

R

1−Rαj∞
· (33)

For the absorption coefficient, or the absorption cross-
section in the medium, we therefore find a Lorentzian with
the same width as for the isolated molecule but with a
shifted resonance frequency. The integral over the line is
given by∫

dωσm(ω) =
1
n

G2

(1−Rαj∞)2

∫
dωσ(ω). (34)

The enhancement factor is of the same type as in the more
general formula in equation (22) but with the simplifica-
tion that the frequency dependent polarisability of the
impurity has been replaced by the real part of the value
at the resonance frequency. In their review, Smith and
Dexter introduced an expression equivalent to the one in
equation (25) into the ratio α/(1 − Rα). However, they
apparently overlooked the contribution from αj∞ to the
numerator. With this omission, one immediately obtains
the resonance term in equation (32), but with the factor
(1−Rαj∞)−1 to the first power, only (Ref. [42], p. 192).

In analogy to the discussion at the end of the previous
section, a simpler derivation of equation (34) may be given
for metal clusters in solution. If the ne active electrons in
a spherical cluster with radius r1 are represented by a
dielectric function of Lorentz type,

ε(ω) = 1−
ω2

0,e

ω2 − ω2
1 + iωγ

, (35)

where ω1 is a binding frequency and ω0,e =
(3nee

2/mr3
1)1/2 is the electronic plasma frequency, one

finds that the polarisability α in vacuum, given by
equation (A.14), takes the form in equation (25), with
α1∞ = 0 and f1 = ne. A more realistic description of-
ten requires that the constant term in equation (35) be
changed from unity to a larger value, ε∞, representing
the polarisability of more strongly bound electrons. This
introduces a constant term in α(ω) and changes the os-
cillator strength to f1 = 9ne/(ε∞ + 2)2. For a cluster in
a solvent with dielectric constant ε, the dipole moment is
given in equation (A.5), and the corresponding effective
polarisability may also be written in the form given by
equation (25), with a modified oscillator strength. Includ-
ing the factor n−1 = ε−1/2 as in equation (13), we then
obtain∫

dωσm(ω) = ε3/2
(
ε∞ + 2
ε∞ + 2ε

)2 ∫
dωσ(ω). (36)
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Fig. 1. Fit (solid line) to measured absorption cross-sections
σm for C60 in hexane solution [8]. The procedure is discussed
in the text and the parameters are given in Table 1.

The concept of a local field enhancement is not invoked in
this derivation but insertion into equation (34) of the val-
ues of G and R in equation (18) shows that the two equa-
tions are consistent. Inclusion of the enhancement would
increase the estimated oscillator strength in Figure 4 of
reference [44] by a factor ∼ 4/3.

6 Absorption by electronic transitions
in fullerenes

In this section we apply the local field correction discussed
in Section 4 to derive the cross-section for an isolated
molecule from absorption by C60 molecules in solution.
The molecular absorption cross-section is obtained most
directly from the attenuation of radiation in a gas cell and
such measurements have been carried out for both C60

and C70 [3–6]. However, to derive absolute cross-sections
one must know the density of the gas, and different de-
terminations of the gas pressure differ by a factor ∼ 2.
The more accurate measurements for fullerenes in solu-
tion have therefore been used for normalisation, corrected
for local field enhancement with the standard Smakula
formula in equation (16) [5,6]. As we shall see, this leads
to a fairly large error in the calibration.

The derivation of absorption cross-sections for free
molecules from measurements of absorption by solute
molecules presents a tricky problem since we have neither
direct information about the real part of the molecular
polarisability α nor the possibility of a Kramers-Kronig
analysis. However, as demonstrated in Appendix B, the
complex α derived from inelastic electron scattering in C60

films can be represented very well by a sum of Lorentzians
(Eq. (B.1)), and with a similar representation of α we can
fit the measured cross-section σm(ω) in solution to the ex-
pression given by equations (11, 18, 22). This is illustrated
in Figure 1 for the measurements of Leach et al. [8]. The
function α(ω) contains four resonance terms and the pa-
rameters are given in Table 1. The value of α at ω = 0
was required to be 85 Å3 as for molecules in the solid
(Fig. 5), and the contribution from higher lying resonances
was represented by the 9 eV resonance included in Ta-
ble 2. The justification for this is the similarity between

Table 1. Parameters for a fit with the function in
equation (B.1) to the molecular polarisability for C60 in hex-
ane solution, derived from the data in reference [8] with
the Onsager correction in equation (22). The parameters in
equation (18) were ε = 1.89 [49] and r1 = 5.26 Å. The value
of the constant was α∞ = 48.08 Å3. The asterisks indicate
numbers kept fixed in the least squares fit.

~ωj [eV] fj ~γj [eV]

3.78 0.26 0.21

4.87 1.41 0.3

6.04 5.32 0.84

9∗ 9.19∗ 1∗

molecules in solution and in films regarding the oscillator
strengths for the lines near 5 and 6 eV and the fact that
only the real part of the 9 eV resonance is significant for
energies below 7 eV. The width of this resonance is there-
fore not important for the fit. The estimate of the cavity
radius for the Onsager correction, r1 = 5.26 Å, has been
derived from the spacing in C60 films. Half the distance
between the centres of nearest neighbours is 5.0 Å and it
seems reasonable to assume that solvent molecules cannot
approach closer than that to a solute C60 molecule, i.e.,
r1 > 5.0 Å. At the same time, since the solvent molecules
are smaller they can pack more closely around the sphere,
and r1 should therefore be smaller than the Wigner-Seitz
radius, rw = 5.52 Å. The resulting real and imaginary
parts of the molecular polarisability are in Figure 2 com-
pared with the corresponding functions derived with the
CM relation from the data on solid films in reference [15],
as discussed also in I. The structures in the functions are
rather similar but with a considerable broadening of the
resonances for the film due to the broadening of the molec-
ular levels into the bands of the solid [47].

The molecular absorption cross-section corresponding
to the polarisability in solution (Eq. (11)) is in Figure 3
compared with gas-phase cross-sections at 684 ◦C [3]. The
gas-phase data have been normalised to give about the
same integrated oscillator strength as the solution mea-
surements for this energy region (see Fig. 8 in I), and this
normalisation is lower by a factor ∼ 2/3 than that rec-
ommended by Coheur et al. [5]. The reason is the differ-
ence, illustrated in Figure 3, between the Smakula and the
Onsager corrections in equations (16, 22). At the lower en-
ergies, the large polarisability of the solute molecule leads
to a stronger local field at the molecule than given by the
Lorentz-Lorenz formula, and hence the measured absorp-
tion cross-section should be reduced by a larger factor to
obtain the cross-section for an isolated molecule.

According to reference [5], the change in normalisation
of the gas-phase data implies that the vapour pressure re-
ported by Piacente et al. [48] would appear to be too low
by about 30%. With this correction, the gas-phase cross-
sections presented by Smith in Figure 1 of reference [6]
become consistent with the values given in our Figure 3.
Smith also compared with absorption in solution and
applied the Smakula formula (named the Chako-Linder
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Fig. 2. The molecular polarisability for C60 in hexane solution,
corresponding to the fit illustrated in Figure 1, compared with
the molecular polarisability in solid films (dotted line). The
polarisability in the solid has been derived from the dielectric
function determined by electron scattering experiments [15]
through the CM relation in equation (5).

Fig. 3. Comparison of molecular absorption cross-sections for
C60, measured in the gas phase at 684 ◦C (dot-dashed) [3] and
in hexane solution [8]. The latter data have been corrected for
polarisation of the solvent, alternatively with the Smakula for-
mula in equation (16) (dotted) and with the Onsager relation
in equation (22) (dashed).

correction) to account for the local field enhancement. As
we have argued, this is incorrect and, as illustrated in
Figure 3, the error is quite large. Furthermore, as is ev-
ident from Table 3 of reference [6], Smith overlooked a
zero off-set by 2 eV on the energy axis in Figure 3 of
reference [49] and therefore used incorrect values of the
index of refraction for the solvent. As a result, the peak
near 6 eV appeared to be significantly lower than that near
5 eV for absorption in solution, whereas the relative mag-
nitude is inverted for the gas-phase measurements. The
relative strength of the two peaks is seen in Figure 3 to be
in good agreement with the gas-phase measurement when

Fig. 4. Comparison of molecular absorption cross-sections for
C60, for solid films (dotted), for molecules in hexane solution
(dashed), and in the gas phase (dot-dashed) [3]. The cross-
section in the solid is derived according to equation (11) from
the imaginary part of the polarisability, shown as the dotted
curve in Figure 2, while the cross-section in solution is repre-
sented by the dashed curve in Figure 3. The full drawn curve
gives the prediction from the model discussed in I.

the solution measurements are analysed with the Onsager
formula.

Because of the large wiggle in Reα around 6 eV, seen
in Figure 2, the Onsager correction causes a large shift of
the 6 eV line, from the observed position to the resonance
frequency for an isolated molecule. According to the for-
mula in equation (28), the shift should be 2.4% for f = 5.3
(Tab. 1) and this agrees roughly with the shift observed in
Figure 3 relative to the curve based on the Smakula cor-
rection, which is energy independent and therefore does
not introduce a shift. Shifts much larger than predicted
from equation (28) have been observed for the 6 eV peak
in solvents with varying index of refraction [32,34] but the
interpretation is unclear since extrapolation of these data
to ε = 1 leads to a position near 6.5 eV for gas-phase ab-
sorption, in disagreement with measurements. A conspic-
uous difference between the two sets of data in Figure 3
is a considerable broadening of the peaks in the gas mea-
surement. This may be interpreted as a consequence of the
elevated temperature which leads to population of excited
vibrational states [50].

In Figure 4 we compare the molecular absorption cross-
sections derived from measurements in the gas phase, in
solution, and in solid films. The three sets of measure-
ments are in fair agreement apart from the broadening
discussed above. In addition, a band between 2 and 3 eV,
which is strongly suppressed in solution, is activated in
the solid [8]. Also for the high-temperature measurements
for molecules in the gas phase, the cross-section is higher
at low photon energies than observed for molecules in so-
lution. As discussed in I, the strength of absorption at low
energies is decisive for the emission of heat radiation from
hot molecules.

7 Concluding remarks

In connection with our study of the electromagnetic
response of fullerenes, we have considered the classical
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problem of determining the local field corrections which
one must apply to extract information on the response
of an isolated molecule from measurements on molecules
embedded in a medium. We have argued that for C60

in solid form, the Lorentz-Lorenz expression for the lo-
cal field and hence the Clausius-Mossotti relation between
the molecular polarisability and the dielectric function of
the solid should be applicable, despite the fact that the
polarised molecules are far from being point dipoles, as is
usually assumed in derivations of this relation.

In solution, the local field at a molecule deviates from
the Lorentz-Lorenz value because the polarisation of sur-
rounding solvent molecules depends on the dipole mo-
ment of the solute molecule, i.e., on its polarisability. We
have argued that the large, nearly spherical C60 molecule
is ideal for application of the Onsager cavity concepts
and have derived the formula which replaces the Lorentz-
Lorenz result and also the corresponding correction to
measured absorption cross-sections. Application of the
Onsager correction improves the consistency of absorp-
tion by C60 in solution, in the gas phase, and in solid films,
regarding both the line positions and the relative intensi-
ties of the lines. For narrow lines the local field correction
simplifies, and for a one-component medium one obtains
the standard Smakula or Chako-Linder formula. However,
this formula does not apply for a multi-component system,
like a solute molecule or an impurity in a solid. We have
discussed this case following the treatment in the review
by Smith and Dexter [42] and have corrected a serious
mistake.

In the literature there is considerable confusion on the
issue of local field corrections to absorption measurements.
The different points of view can perhaps best be under-
stood from the expression in equation (17) for the local
field in terms of the field in an empty cavity and a renor-
malisation accounting for the response of the medium to
the molecular dipole in the cavity. The interaction of the
reaction field with the molecular dipole can be consid-
ered a self energy and, as discussed in reference [39], some
authors have argued that this self energy should not be
included in the evaluation of absorption and, as a con-
sequence, that the formula for the cavity field without
the renormalisation should be used. Other authors have
argued that the renormalisation factor only shifts absorp-
tion lines without changing the intensity [46], or that it
should enter to the first power, only, in the enhancement
factor [42]. The erroneous result of Smith and Dexter has
been adopted in Stoneham’s standard textbook on defects
in solids [51], but Stoneham also notes that there is no
consensus at all in the literature on application of correc-
tions for local field enhancement, and he gives a number
of references to authors with different opinions. A paper
by Leigh and Szegeti has often been quoted as proof that
local field effects are not large [52]. However, these authors
from the outset make the erroneous assumption that there
can be no microscopic variations of a radiation field.

We have found similar statements, that the local field
corrections are small, in the chemical literature on ab-
sorption by solute molecules, with reference to a paper by

Buckingham from 1958 [53]. He chose a spherical speci-
men with radius large compared to molecular dimensions
but small compared to the wavelength of the radiation to
be able to apply a result derived by Kirkwood [54]. We
quote from page 176 in reference [53]: “It could be said
that small spheres are not experimentally realistic, but
unless the shape of the absorption cell affects the intensi-
ties of the solute’s bands the model system considered is
arbitrary. The spherical one is mathematically tractable”.
The problem is that the shape of the specimen does affect
the intensities. According to the discussion at the end of
Appendix A, the external dipole moment µs of a spheri-
cal sample is reduced by the factor 3/(ε + 2) relative to
the value µe to be used for calculation of absorption in
a flat specimen with perpendicular incidence of the pho-
tons. The error (or misinterpretation [20]) was corrected
by Buckingham in a later paper [55], where a result con-
sistent with our Onsager formula in equation (34) was
derived.

Although our treatment of the local field enhance-
ment has been aimed at the analysis of measurements on
fullerenes, we hope through our discussion of the litera-
ture on the subject also to have made a small contribu-
tion towards a general conceptual clarification of this old
problem. The theory of dielectrics is not technically very
difficult but the concepts and arguments are subtle. As our
discussion has shown, it is easy to make mistakes, even for
experts in the field!

This project was supported by the Danish National Research
Foundation through the research centre ACAP. We wish to
thank B. Bech Nielsen and A. Howie for many stimulating
discussions and for giving us a number of references to previous
work in this field.

Appendix A

In this appendix we derive a number of formulas needed
for the discussion of the Onsager model of a solute
molecule as a polarisable entity inside a spherical cavity
in a homogeneous dielectric. The molecule is exposed to
monochromatic radiation and for wavelengths long com-
pared to the extension of the cavity, the complex ampli-
tude of the electric field in and around the cavity may be
derived from the same equations as in electrostatics [1,56].
Owing to the spherical symmetry we may expand the po-
tential in spherical harmonics Ylm(θ, φ), and since it sat-
isfies the Laplace equation the expansion coefficients con-
tain just two terms, proportional to rl and r−(l+1) [40],

Φ(r) =
∑
l,m

Ylm(θ, φ)(Almrl +Blmr
−(l+1)). (A.1)

Continuity of the normal component of the displacement
D and the tangential component of the electric field E at
the spherical boundary gives two linear equations which
couple the values of the coefficients A and B inside and
outside the boundary but do not mix coefficients with dif-
ferent labels (l,m). When no sources are present inside
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the sphere, all B coefficients vanish here, and for each pair
(l,m) there is then only one free parameter. The induced
dipole moment is represented by the B coefficients with
l = 1 in the external region and they may then be deter-
mined from the corresponding A coefficients in the same
region. These represent a constant external field which for
a spherical dielectric in vacuum equals the total external
field at the centre. An example of this situation is a spher-
ical molecule surrounded by a lattice of other molecules,
as discussed in Section 2.

In the Onsager model, the local field is divided into a
cavity field for an empty cavity and a reaction field caused
indirectly by the presence of a dipole in the cavity. We con-
sider first the case of a sphere with radius r1 and dielectric
function ε, exposed to an external field in a medium with
dielectric function ε. For ε = 1 we obtain the cavity field
from this calculation and the result for ε 6= 1 is needed
both for the discussion of the CM relation and for the
representation of molecules or clusters by a simple model.
To determine the reaction field, we then discuss the case
of a dipole with fixed magnitude at the centre of an empty
cavity in a medium without an external field.

In the calculation of the dipole moment induced in a
sphere in a medium, we may neglect all components of the
potential with l 6= 1 and choose the asymptotic form of
the potential,

Φ(r) = −Er cos θ, r →∞, (A.2)

corresponding to a constant external field E in the z-
direction. If we introduce the internal field Ei, the po-
tential may be written as

Φ(r) =

{
−Eir cos θ, r < r1

(−Er + δpε−1r−2) cos θ, r > r1
, (A.3)

where the notation δp for the induced dipole moment
refers to the fact that the dipole field is proportional to the
difference between the dipole moment of the sphere and
that of a sphere with dielectric function ε. The continuity
equations for E and D at the boundary become

−E + δpε−1r−3
1 = −Ei

−εE − 2δpr−3
1 = −εEi, (A.4)

and for the dipole moment and the internal field we obtain

δp = εr3
1

ε− ε
ε+ 2ε

E, (A.5)

and

Ei =
3ε

ε+ 2ε
E. (A.6)

Within the sphere, the induced polarisation, P = (ε −
1)Ei/4π, gives rise to a field which we denote by Ei−Eloc.
The magnitude of this field is calculated most easily
for a sphere in vacuum where Eloc = E, and using

equation (A.6) with ε = 1 we obtain the general result
for uniform polarisation of a sphere,

Ei −Eloc = −4π
3

P. (A.7)

Expressing again P in terms of Ei, we obtain from equa-
tions (A.6, A.7) for the local field acting on the sphere in
a medium,

Eloc =
ε(ε+ 2)
2ε+ ε

E, (A.8)

and for ε = 1 this formula gives the cavity field GE with
the expression for G in equation (18).

We now consider a spherical cavity in a dielectric,
with a dipole moment µ at the centre. The potential in
equation (A.3) is replaced by

Φ(r) =

{
(−Eir + µr−2) cos θ, r < r1

µeε
−1r−2 cos θ, r > r1

, (A.9)

and the boundary conditions become

µeε
−1r−3

1 = −Ei + µr−3
1 ,

−2µer
−3
1 = −Ei − 2µr−3

1 . (A.10)

From these equations we obtain the value of the reaction
field,

Ei =
2(ε− 1)
2ε+ 1

r−3
1 µ = Rµ, (A.11)

and of the external dipole moment,

µe =
3ε

2ε+ 1
µ = Gµ. (A.12)

If the dielectric medium were penetrating into the dipole
and the two opposite charges were screened indepen-
dently, being placed for example at the centres of two
non-overlapping cavities, the effect of the screening would
be represented fully by the factor ε−1 in equation (A.9),
i.e., µe would be equal to µ, but as expressed in
equation (A.12), the polarisation of the medium is some-
what different when the two charges are placed in one
cavity, both slightly off centre.

In Section 4 of the main text, the dipole µ in the cav-
ity derives from a molecule with polarisability α, placed
in a dielectric with constant electric field E far from the
molecule. In the absence of the molecule, the field in the
cavity is GE, and to lowest order the induced dipole mo-
ment then becomes αGE and the reaction field R(αGE).
This in turn modifies the induced dipole and including
this modification to infinite order we obtain for the local
field acting on the molecule,

Eloc = GE +
∞∑
n=1

(Rα)nGE = G
1

1−RαE. (A.13)
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For the special case that the molecule is represented by
a sphere with dielectric constant ε, the polarisability α is
obtained from equation (A.5) with ε = 1,

α = r3
1

ε− 1
ε+ 2

· (A.14)

Inserting this expression and the formulas forG andR into
equation (A.13), we retrieve equation (A.8). Combining
equations (A.12, A.13), we obtain for the magnitude of
the induced external dipole moment,

µe = G2 αE

1−Rα, (A.15)

which is the relation used in the discussion of the Onsager
correction in Section 4. If the molecule is represented by a
dielectric medium in the cavity, with a dielectric function
ε related to α through equation (A.14), and the dipole mo-
ment of a sphere with dielectric function ε is subtracted,
the expression in equation (A.15) reduces to the formula
in equation (A.5).

The geometry is important in polarisation problems.
The dipole moment µe, minus the dipole moment of the
displaced material, may be interpreted as the additional
dipole moment of a macroscopic specimen due to the pres-
ence of the impurity molecule. The specimen should be
shaped like a needle or a thin slab, with the surfaces paral-
lel to the E field, to avoid contributions from polarisation
charges on the surfaces. If instead we consider a spherical
sample with radius r2 � r1, the external dipole moment
µs stemming from the molecular dipole moment µ is re-
duced by the induced surface charges. For this geometry,
the potential in equation (A.9) is replaced by

Φ(r) =


(−E1r + µr−2) cos θ, r < r1

(−E2r + µeε
−1r−2) cos θ, r1 < r < r2,

µsr
−2 cos θ, r2 < r

(A.16)

and from the boundary conditions at the outer surface we
obtain the relation

µs =
3

ε+ 2
µe. (A.17)

Owing to the presence of the field E2 in the dielec-
tric, the value of µe is modified relative to that given
in equation (A.12) by an additive term proportional to
(r1/r2)3, but for a macroscopic sample this term is neg-
ligible. We have used the notation of Fröhlich [19] and
note that there is a misprint in the corresponding equa-
tion (A2.32), where µe has been replaced by µi.

It is easy to get confused by the many different defini-
tions of dipole moments associated with an impurity [19].
Let us therefore show by a simple argument that the dipole
moment δp, defined in equation (A.3) from the dipole field,
is indeed the proper value to use in a calculation of the
change in dielectric function of the medium due to the

Fig. 5. Illustration of the fit with the expression in
equation (B.1) (solid lines) to the molecular polarisability of
C60 derived from the electron energy loss measurements in
reference [15]. The curves which are highest at low energies
correspond to Reα and the lower curves to Imα. The parame-
ters for the fit are given in Table 2.

presence of the impurity dipoles. Consider a charged par-
allel plate capacitor containing the medium. Now intro-
duce a density δN of dipoles, directed from the positive
towards the negative plate and with fields corresponding
to the potential in equation (A.3). The extra field between
the plates equals the one from a dipole density δN(δp/ε)
in vacuum or, equivalently, from surface charge densities
∓δN(δp/ε) in vacuum. To retain the original field in the
dielectric, we must augment the charge densities on the
plates by±εδN(δp/ε). Thus the introduction of the dipoles
changes the polarisation by δNδp, as surmised.

Appendix B

From electron energy loss measurements on C60 films, the
function Im(−1/ε(ω)) has been derived within a broad fre-
quency range and both the real and the imaginary part of
ε(ω) have been determined by a Kramers-Kronig analysis.
We show in this appendix that the corresponding molec-
ular polarisability α(ω) can be parameterised through a
fit with a sum of Lorentzians. In Section 6 we apply this
result and introduce a similar fit to obtain an estimate
of the complex polarisability of C60 molecules in solution,
based on measurements of photoabsorption.

In their Figure 1 Sohmen et al. present the real and
imaginary parts of the dielectric function ε(ω) of the solid
in the range 0–40 eV [15]. Assuming the Clausius-Mossotti
relation to hold, we obtain the molecular polarisability
from equation (5) and represent the data by the sum

α(ω) = α∞ −
5∑
j=1

fje
2/m

ω2 − ω2
j + iγjω

· (B.1)

The parameters obtained are given in Table 2 and the
quality of the fit is illustrated in Figure 5. A similar rep-
resentation was introduced by Ren et al. for their mea-
surements on C60 films by ellipsometry [12]. With this
experimental method, both of the optical functions n(ω)
and k(ω) are obtained and one does not have to rely
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Table 2. Parameters for a fit with the function in
equation (B.1) to the molecular polarisability for C60 in solid
films, derived from the data in Figure 1 of reference [15] with
the Clausius-Mossotti relation and with a density N = 1.42 ×
10−3 Å−3. The value of the constant is α∞ = 40.83 Å3. The
asterisks indicate numbers kept fixed in the least squares fit.

~ωj [eV] fj ~γj [eV]

2.72 0.082 0.38

3.66 0.549 0.57

4.76 2.01 0.75

5.97 6.13 1.35

9∗ 9.19 1∗

Fig. 6. Comparison of the optical functions n (upper curves)
and k derived from electron energy loss measurements [15] and
from ellipsometry (dotted lines) [12].

on a Kramers-Kronig analysis to extract the dielectric
function. However, the experiment in reference [12] was
limited to a rather narrow energy interval, ∼ 1.5–5.3 eV.
A comparison between energy-loss and ellipsometry data
is shown in Figure 6 and the agreement is seen to be quite
good.
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